Ginsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes).
نویسندگان
چکیده
We examined the effect of ginsenoside Rg1 or Rb1, the active ingredients of ginseng, on the release of endogenous glutamate from glutamatergic nerve terminals purified from rat cerebral cortex. Result showed that the Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine was facilitated by ginsenoside Rg1 or Rb1 in a concentration-dependent manner. Sequential experiments reveal that ginsenoside Rg1 or Rb1-mediated facilitation of glutamate release (i) results from an enhancement of vesicular exocytosis; (ii) is not due to an alternation of synaptosomal excitability; (iii) is associated with an increase in Ca(2+) influx through presynaptic N- and P/Q-type voltage-dependent Ca(2+) channels; (iv) appears to involve a protein kinase A pathway. These results conclude that ginsenoside Rg1 or Rb1 exerts their presynaptic facilitatory effect, likely through the activation of protein kinase A, which subsequently enhances Ca(2+) entry to cause an increase in evoked glutamate release from rat cortical synaptosomes. This finding might provide important information regarding the action of ginseng in the central nervous system.
منابع مشابه
Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals
The effect of palmitoylethanolamide (PEA), an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated. PEA inhibited the Ca²⁺-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration ...
متن کاملUnexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors.
Presynaptic 5-HT(2A) receptor modulation of glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated by using the 5-HT(2A/2C) receptor agonist (+/-)-1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI). DOI potently inhibited 4-aminopyridine (4AP)-evoked glutamate release. Involvement of presynaptic 5-HT(2A) receptors in this modulation of 4AP-evoked release was...
متن کاملEchinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca2+ Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca(2+)-d...
متن کاملDimebon, an antihistamine drug, inhibits glutamate release in rat cerebrocortical nerve terminals.
The excessive release of glutamate is a critical element in the neuropathology of acute and chronic brain disorders. The purpose of the present study was to investigate the effect and possible mechanism of dimebon, an antihistamine with a neuroprotective profile, on endogenous glutamate release in the nerve terminals (synaptosomes) of the rat cerebral cortex. Dimebon inhibited the release of gl...
متن کاملPresynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus.
We have explored the mechanisms involved in the facilitation of glutamate release mediated by the activation of kainate receptors in the rat hippocampus using isolated nerve terminal (synaptosome) and slice preparations. In hippocampal nerve terminals, kainate (KA) produced an increase of glutamate release at concentrations of agonist ranging from 10 to 1000 microm. In hippocampal slices, KA at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of pharmacology
دوره 578 1 شماره
صفحات -
تاریخ انتشار 2008